- · Finish: Kirchberg => Tsirelson · Start the model theory route

Peminder: $|F(k,n)| = Z_n \times ... \times Z_n$ k + mes $e_{1,...}^{\times}$, e_n^{\times} spectral projectors for the generator of the $x \stackrel{th}{=} copy$ of Z_n A PVM in C*(|F(k,n))

Families $(A^{\times})_{\text{kelv}}$ = ucp maps = Ucp maps = Ucp maps $= (C^{*}(IF(v_{in})) -)P(v_{i})$ $= (e^{\times}) - A^{\times}$

Thm If $P \in [0,1]^{k^2n^2}$ then: $P \in Cqa(k,n) = C_q(k,n)$ iff there is a state \emptyset on $C^*(IF(k,n)) \otimes_{min} C^*(IF(k,n))$ s.t. $D(a,b|x,y) = \emptyset(e^*a \otimes e^*b)$

3 Same for Cqc(kin) and @max.

Fact If A is a C*-alg and a E A+, then II all = sup { &(a): & state on A3.

Given game 4, define

Ty $\in C^*(IF(k,n)) \odot C^*(IF(k,n))$: $Ty = \sum_{(x,y) \in F(k)^2} T(x,y) \sum_{(a,b) \in F(k)^2} D(x,y,a,b) (e^x \otimes e^b)$

: Val*(y) = llyllmin
Valco(y) = llyllmax

Leffectuely approx from above:

C*(IF(kin)) & max C*(IF(kin))

= C*(IF(kin) x IF(kin))

finitely presented

Cor If CC*CIF(kin), C*(IF(kin)) 13 a nuclear pair, then Toirelson is time.

Kirchberg: (C*(IFu), C*(IFu)) nucleur pair. Close enough...

(Fof Thin)

(Pe) WLOG, PECqs(kin).

Have Hilbert spaces HA, HB,

POVMS (Ax) xervi, (Bx) xervi on HA, HB,

unit vector Se HA& HB s.t.

p(a,b|x,y) = <(Ax&BB)S, S>.

ucp maps \$\overline{A}\text{:} (\text{IF(kin)}) -> B(\text{IF(kin)}) -> B(\text{IF(kin)})

I ucp \$\overline{A}\text{\overline{B}}\text{\overline{B}}(\text{IF(kin)}) \rightarrow B(\text{IF(kin)})

-> B(\text{IF(kin)}) \text{\overline{B}}(\text{IF(kin)})

(=) Have state β on $C^*(IF(k_1n)) \otimes Mnn C^*(IF(k_1n))$. $C^*(IF(k_1n)) \subseteq 3S(H)$

.: C*(IF(kin))@min (*(IF(kin)) = B(H@H) Extend Ø to a stak, also called Ø, on B(H@H).

Approximate \varnothing by states of the firm $\sum_{i=1}^{n} \lambda_i < s_i, s_i > 1$, $\sum_{i=1}^{n} \lambda_i < s_i, s_i > 1$, which vectors in $H \otimes H$, $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$.

when applied to exall your correlations in Cas (kin).

Use Cyalkin) convex, closed. 13

Enter model theory!

Formal language for talking about atomics tracial vivas.

Quantifier—free formula: $u(\mathcal{L}_{1}(\mathcal{R}), \dots, \mathcal{L}_{m}(\mathcal{R}))$, where each \mathcal{L}_{1} is all the form $tr(p_{1}(\mathcal{R}))$, $p_{1}(\mathcal{R})$ +-poly. In \mathcal{R}_{1} rancomethy,

u: IRM -> IR continuous function

If $U(\vec{x})$ is a formula, then so are sup $U(\vec{x})$, inf $U(\vec{x})$. $||x|| \leq m$ $||x|| \leq m$

Interpretations: If (PCZ) is a formula,

(M, Y) tracral vNa, as typle from M,

(P(a) = result of "plugging in" a into z

= real #

of formula

ex Ce(x) was sup $IIxy-yx1l_2$ For (M,T) tracial v. Na, aeM, $Ce(a)^M=0$ iff $a \in Z(M)$.

Sentence: No free variables. ex $\sigma = \sup_{||x|| \leq 1} \mathcal{C}(x)$, $\mathcal{C}(x)$ as above. $\sigma M = 0$ iff M abelian.

- Tracial VIVas are axiomatizable as are 11, factors.

CEP & Model Theory Universal sentence: $\sigma = \|x\|_{E_1} \ \mathcal{L}(x)$ Universal theory of (M, Υ) : function Thy (M, Υ) : funiversal sentences $f \to f$ $f \to f \to f \to f \to f$

Notice: If $(M,T) \subset (N,T)^{2}$, then
Thu $(M,T) \subseteq Thu (N,T)$ Model theory |0|: Converse is true:
If thu $(M,T) \subseteq Thu (N,T)$, then $(M,T) \hookrightarrow (N,T)^{2}$.
Since \mathbb{R} embeds into any |1|, factor, get:

Thm CEP is equivalent to: Thy(M) = Thy(R) for all 11, factors M. Thm (G. and Hart) If CEP is true, then Thr(R) is computable: there is an algorithm so that, upon inputs of, e, returns an interval I = IR, III<e, with or R & I.

Rml: Can always approximate such σ from below effectively. $R = UM_{2}^{n}(C)$

Pf of Thm: Key: There is a Soundarys
and Completeness Thrn for Continuous Logic

(Ben Yaqcov/Pederson)

Sup & o. M. II, factor 3 = inf } r = (2) Till + o. x.)

II Manque

OR assuming CEP effectively

Can effectively enumerate r's for which
Can effectively enumerate r's for which The toer. This algorithm gives effective upper bonds.
Thm (G. & Hart) MIP=RE=Tha(R) is not computable.
Idaa: Mal*(1) Anold he expressible as

Idea: Val*(y) should be expressible as

or for some universal sentence or.

Question: What oy?

Det $p \in Cqa(k,n)$ is synchronous if, $\forall x$ p(a,b|x,x)=0 if $a\neq b$. Cqa(k,n)= set of synchronous qq-strat.

Rink: S-Val*(y) = supper val (y, p)

 $s-val^*(y) \leq val^*(y)$ But: The games in MIP*=RE are s.t. if \mathcal{M} halts, then $s-val^*(ym)=1$.

Thm (Kim, Yadsen, Shauthauser) PE Cza(k,n) iff there are projections ex,-, ex in Bu (for each xe[k]) with Za=, ex= 1 and p(a,blx,y) = $\gamma(e^x e^y) \in atomic formle$ Tunique trace on Pru $S-val^*(y) = \left(\begin{array}{c} \sup \left(\sum \pi(x,y) \sum \pi(x,y) a_i b_i \right) \\ \widehat{e}(x,y) \in \Gamma(u) \end{array} \right) \left(\begin{array}{c} \sup \left(\sum (x,y) \in \Gamma(u) \\ (a,b) \in \Gamma(u) \end{array} \right) \right)$ Close!

If Γ is any ICC amenable group (e.g. Γ = 0Sn), then $U\Gamma$) ≈ R.

R is an e.c. model of Thy(R).